Đề thi thử vào 10(có đáp án) năm học 2015-2016

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn:
Người gửi: Đặng Ngọc Trình
Ngày gửi: 11h:33' 01-06-2015
Dung lượng: 122.0 KB
Số lượt tải: 631
Nguồn:
Người gửi: Đặng Ngọc Trình
Ngày gửi: 11h:33' 01-06-2015
Dung lượng: 122.0 KB
Số lượt tải: 631
Số lượt thích:
0 người
TRƯỜNG THCS hòa
ĐỀ THI THỬ TUYỂN SINH VÀO LỚP 10 THPT
Năm học: 2015 – 2016
Môn thi: TOÁN
Thời gian làm bài: 120 phút, không kể thời gian giao đề.
---------------------------------------------------------------------------------------------------------------------
Câu 1: (2,5 điểm)
Cho biểu thức A =
Nêu ĐKXĐ và rút gọn A
Tìm giá trị của x để A =
Tìm x để biểu thức A > 0
Câu 2: (2,0 điểm)
Cho phương trình bậc hai: x2 – 2(m + 2)x + m2 + 7 = 0 (1) (m là tham số)
Giải phương trình (1) khi m = 1
Tìm m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1x2 – 2(x1 + x2) = 4
Câu 3: (2,0 điểm)
Quãng đường AB dài 120 km. Hai xe máy khởi hành cùng một lúc đi từ A đến B. Vận tốc của xe thứ nhất lớn hơn vận tốc của xe thứ hai là 10 km/h nên xe máy thứ nhất đến B trước xe thứ hai 1 giờ. Tính vận tốc của mỗi xe.
Câu 4: (3,0 điểm)
Cho điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE tới đường tròn đó (B, C là hai tiếp điểm; D nằm giữa A và E). Gọi H là giao điểm của AO và BC.
Chứng minh rằng ABOC là tứ giác nội tiếp.
Chứng minh rằng: AH. AO = AD. AE
Tiếp tuyến tại D của đường tròn (O) cắt AB, AC theo thứ tự tại I và K. Qua điểm O kẻ đường thẳng vuông góc với OA cắt AB tại P và cắt AC tại Q.
Chứng minh rằng: IP + KQ PQ
Câu 5:(0,5 điểm)
Cho biểu thức P = xy(x - 2)(y+6) + 12x2 – 24x + 3y2 + 18y + 36
Chứng minh P luôn dương với mọi x,yR.
------------- Hết -------------
Họ và tên:................................................ Phòng thi............. SBD:............... Lớp: 9...
ĐÁP ÁN, BIỂU ĐIỂM - HƯỚNG DẪN CHẤM
Câu 1: (2,5 điểm)
ĐKXĐ: x > 0, x 1 (1điểm)
Rút gọn: A =
A = <=> (thỏa mãn) (1điểm)
c) A> 0 <=> > 0. Mà nên .
Do đó hay x > 1 (TMĐK) (0,5 điểm)
KL: x > 1 thì A> 0
Câu 2: (2 điểm)
với m = 1, ta có Pt: x2 – 6x + 8 = 0 => x1 = 2, x2 = 4 (1 điểm)
xét pt (1) ta có: = (m + 2)2 – (m2 + 7) = 4m – 3 (1 điểm)
phương trình (1) có hai nghiệm x1, x2 ( m
Theo hệ thức Vi-et:
Theo giả thiết: x1x2 – 2(x1 + x2) = 4
m2 + 7 – 4(m +2) = 4
( m 2 – 4m – 5 = 0 => m1 = - 1(loại)
m2 = 5 (thỏa mãn)
Vậy m = 5
Câu 3: (2 điểm)
Gọi vận tốc của xe thứ hai là x (km/h), ĐK: x > 0
vận tốc của xe thứ nhất là x + 10 (km/h)
Theo bài ra ta có pt: ( x2 + 10x – 1200 = 0
=> x1 = 30 (t/m) x2 = - 40 (loại)
vậy vận tốc của xe thứ nhất là 40km/h, của xe thứ hai là 30km/h
Câu 4: ( 3 điểm)
- Hình vẽ đúng: (0,5 điểm)
a) (1 điểm)
Giải thích được
=> tứ giác ABOC nội tiếp
b) ( 1 điểm) ABD AEB (g.g) => AD.AE = AB2 (1)
ABO vuông tại B, BH AO => AH.AO = AB2 (2)
=> AH. AO = AD. AE
c) ( 0,5 điểm)
Áp dung BĐT Côsi: IP + KQ 2
Ta có:APQ cân tại A=>OP = OQ => PQ = 2OP
Để C/m IP + KQ
ĐỀ THI THỬ TUYỂN SINH VÀO LỚP 10 THPT
Năm học: 2015 – 2016
Môn thi: TOÁN
Thời gian làm bài: 120 phút, không kể thời gian giao đề.
---------------------------------------------------------------------------------------------------------------------
Câu 1: (2,5 điểm)
Cho biểu thức A =
Nêu ĐKXĐ và rút gọn A
Tìm giá trị của x để A =
Tìm x để biểu thức A > 0
Câu 2: (2,0 điểm)
Cho phương trình bậc hai: x2 – 2(m + 2)x + m2 + 7 = 0 (1) (m là tham số)
Giải phương trình (1) khi m = 1
Tìm m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1x2 – 2(x1 + x2) = 4
Câu 3: (2,0 điểm)
Quãng đường AB dài 120 km. Hai xe máy khởi hành cùng một lúc đi từ A đến B. Vận tốc của xe thứ nhất lớn hơn vận tốc của xe thứ hai là 10 km/h nên xe máy thứ nhất đến B trước xe thứ hai 1 giờ. Tính vận tốc của mỗi xe.
Câu 4: (3,0 điểm)
Cho điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE tới đường tròn đó (B, C là hai tiếp điểm; D nằm giữa A và E). Gọi H là giao điểm của AO và BC.
Chứng minh rằng ABOC là tứ giác nội tiếp.
Chứng minh rằng: AH. AO = AD. AE
Tiếp tuyến tại D của đường tròn (O) cắt AB, AC theo thứ tự tại I và K. Qua điểm O kẻ đường thẳng vuông góc với OA cắt AB tại P và cắt AC tại Q.
Chứng minh rằng: IP + KQ PQ
Câu 5:(0,5 điểm)
Cho biểu thức P = xy(x - 2)(y+6) + 12x2 – 24x + 3y2 + 18y + 36
Chứng minh P luôn dương với mọi x,yR.
------------- Hết -------------
Họ và tên:................................................ Phòng thi............. SBD:............... Lớp: 9...
ĐÁP ÁN, BIỂU ĐIỂM - HƯỚNG DẪN CHẤM
Câu 1: (2,5 điểm)
ĐKXĐ: x > 0, x 1 (1điểm)
Rút gọn: A =
A = <=> (thỏa mãn) (1điểm)
c) A> 0 <=> > 0. Mà nên .
Do đó hay x > 1 (TMĐK) (0,5 điểm)
KL: x > 1 thì A> 0
Câu 2: (2 điểm)
với m = 1, ta có Pt: x2 – 6x + 8 = 0 => x1 = 2, x2 = 4 (1 điểm)
xét pt (1) ta có: = (m + 2)2 – (m2 + 7) = 4m – 3 (1 điểm)
phương trình (1) có hai nghiệm x1, x2 ( m
Theo hệ thức Vi-et:
Theo giả thiết: x1x2 – 2(x1 + x2) = 4
m2 + 7 – 4(m +2) = 4
( m 2 – 4m – 5 = 0 => m1 = - 1(loại)
m2 = 5 (thỏa mãn)
Vậy m = 5
Câu 3: (2 điểm)
Gọi vận tốc của xe thứ hai là x (km/h), ĐK: x > 0
vận tốc của xe thứ nhất là x + 10 (km/h)
Theo bài ra ta có pt: ( x2 + 10x – 1200 = 0
=> x1 = 30 (t/m) x2 = - 40 (loại)
vậy vận tốc của xe thứ nhất là 40km/h, của xe thứ hai là 30km/h
Câu 4: ( 3 điểm)
- Hình vẽ đúng: (0,5 điểm)
a) (1 điểm)
Giải thích được
=> tứ giác ABOC nội tiếp
b) ( 1 điểm) ABD AEB (g.g) => AD.AE = AB2 (1)
ABO vuông tại B, BH AO => AH.AO = AB2 (2)
=> AH. AO = AD. AE
c) ( 0,5 điểm)
Áp dung BĐT Côsi: IP + KQ 2
Ta có:APQ cân tại A=>OP = OQ => PQ = 2OP
Để C/m IP + KQ
 
Chào mừng quý vị đến với website của trường THCS Bích Hòa
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành
viên, vì vậy chưa thể tải được các tài liệu của
Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.
Nếu chưa đăng ký, hãy nhấn vào chữ ĐK thành viên ở phía bên trái, hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay phía bên trái.









Các ý kiến mới nhất